Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hai-Qing Sun, Wen-Tao Yu, Duo-Rong Yuan,* Xin-Qing Wang and Xue Gang

Institute of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China

Correspondence e-mail: dryuan@icm.sdu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.010 Å R factor = 0.037 wR factor = 0.093 Data-to-parameter ratio = 29.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tris(allylthiourea-kS)chlorozinc(II) chloride

The title complex, $[ZnCl(C_4H_8N_2S)_3]Cl$, comprises $[ZnCl(ATU)_3]^+$ cations (ATU is allylthiourea) and Cl^- anions, both of which lie on threefold axes. The three S atoms of the allylthiourea molecules and one Cl atom coordinate the Zn atom in a tetrahedral arrangement. The crystal packing is mainly determined by weak $N-H\cdots Cl$ hydrogen bonds.

Received 27 August 2004 Accepted 10 September 2004 Online 18 September 2004

Comment

N-Allylthiourea (abbreviated as ATU) is a chemically interesting ligand that has attracted recent attention as its transition-metal complexes exhibit interesting properties and applications, *e.g.* copper complexes used in copper electroplating (Olijnyk *et al.*, 2003), rhenium(III) complexes for radiotherapeutic purposes (Gambino *et al.*, 2002), and cadmium or mercury compounds for non-linear optical applications (Yuan *et al.*, 1993).

The title compound, $[ZnCl(ATU)_3]Cl$, (I), is a non-linear optical material investigated in our group with the guidance of the theoretical double radical model (Xu *et al.*, 1987) as part of a continuing intensive study of ATU complexes of group IIB elements for non-linear optics. As a new member of this series (Yuan *et al.*, 1993), (I) has a similar structure to related species but belongs to a different space group.

The crystal structure of (I) comprises $[ZnCl(ATU)_3]^+$ (Fig. 1) and Cl⁻ ions, each disposed about a common threefold axis. In the cation, the Zn atom is four-coordinate, being surrounded by three ATU molecules, acting as monodentate ligands through the S atoms, and one Cl atom. The Zn-Cl1 and Zn-S distances [2.3092 (13) and 2.3283 (8) Å, respec-

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

tively; Table 1] are both longer than the sum of single-bond covalent radii (2.24 and 2.29 Å, respectively; Pauling, 1960), and shorter than the sum of the Shannon (1976) ionic radii, i.e. 2.41 and 2.44 Å, respectively, which indicates that the two bonds have intermediate covalent and ionic character. The values are comparable to the average values reported in other complexes in which Zn is four-coordinated by S and Cl atoms (e.g. Kunchur & Truter, 1958; Lopez-Garzon et al., 1993). The S=C and average C-N distances [1.713 (3) and 1.326 (4) Å, respectively] agree well with the values found in other metalallylthiourea complexes (e.g. Chiesi et al., 1971; Ferrari et al., 1972; Filinchuk et al., 1996), which appear to be, respectively, longer and shorter than the values reported in free allylthiourea of 1.656 (10) and 1.366 (12) Å, respectively (Dragonette & Karle, 1965), the large uncertainties notwithstanding. These variations reflect the coordination of the S atom to the central element.

The bond angles around the Zn atom range from 108.58 (3) to 110.34 (3)°, similar to those in $Zn[S=C(NH_2)_2]_2Cl_2$ (Kunchur & Truter, 1958), indicating little deviation from the ideal tetrahedral value of 109.5°. The distorted tetrahedral geometry is an important factor leading to their high nonlinear optical effect.

Atom Cl2 functions as a hydrogen-bond acceptor in the structure, forming six N-H···Cl bonds with three adjacent molecules, where the nine S atoms lie in the same plane (Table 2). Each molecule provides -NH₂ and -NH- groups from one ATU ligand as two donors. There are also three intramolecular hydrogen bonds of the type $-N-H\cdots$ Cl1.

Experimental

ZnCl₂ and ATU (molar ratio 1:3) were dissolved in deionized water and diethyl ether, respectively. They were then mixed together with stirring for 30 min. After standing for 24 h, the solution divided into two layers, and a pale-yellow oily solid appeared in the ether layer. The oily solid was separated and dissolved in a small volume of ethanol. Small colourless single crystals of [ZnCl(ATU)₃]Cl were obtained by the slow evaporation of this solution. The powder second harmonic generation (SHG) test has indicated that the SHG efficiency of the [ZnCl(ATU)₃]Cl crystal is comparable to that of urea.

Crystal data

$[ZnCl(C_4H_8N_2S)_3]ClM_r = 484.82Trigonal, R3a = 11.0498 (4) Åc = 16.0416 (11) ÅV = 1696.24 (15) Å3Z = 3$	Mo K α radiation Cell parameters from 46 reflections $\theta = 5.0-12.5^{\circ}$ $\mu = 1.61 \text{ mm}^{-1}$ T = 293 (2) K Prism, colourless
$D_x = 1.424 \text{ Mg m}^2$ Data collection	$0.45 \times 0.40 \times 0.31 \text{ mm}$
Bruker P4 diffractometer ω scans Absorption correction: ψ scan (XSCANS; Bruker, 1996) $T_{min} = 0.522$, $T_{max} = 0.607$ 2412 measured reflections 2190 independent reflections 1849 reflections with $L > 2\sigma(I)$	$R_{int} = 0.024$ $\theta_{max} = 30.0^{\circ}$ $h = -14 \rightarrow 14$ $k = -15 \rightarrow 15$ $l = -22 \rightarrow 22$ 3 standard reflections every 97 reflections intensity decay: 0.2%

Figure 1

Molecular structure of the cation in Zn[Cl(ATU)₃]Cl; the cation has threefold symmetry. Displacement ellipsoids are shown at the 30% level. H atoms have been omitted. [Symmetry codes: (A) 1 - x + y, 2 - x, z; (B) 2 - y, 1 + x - y; *z*.]

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} < 0.001$
$R[F^2 > 2\sigma(F^2)] = 0.037$	$\Delta \rho_{\rm max} = 0.41 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.093$	$\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$
S = 1.01	Extinction correction: SHELXL97
2190 reflections	Extinction coefficient: 0.0156 (10)
74 parameters	Absolute structure: Flack (1983),
H-atom paramteres constrained	1082 Friedel pairs
$w = 1/[\sigma^2(F_o^2) + (0.0548P)^2]$	Flack parameter = $0.002(15)$
+ 0.0198P]	
where $P = (F_o^2 + 2F_c^2)/3$	

Table 1

Selected geometric parameters (Å, °).

Zn1-Cl1	2.3092 (13)	N1-C1	1.325 (4)			
Zn1-S1	2.3283 (9)	C1-N2	1.327 (4)			
S1-C1	1.713 (3)	N2-C2	1.458 (5)			
Cl1-Zn1-S1	108.58 (3)	N1-C1-N2	117.3 (3)			
$S1-Zn1-S1^{i}$	110.34 (3)	N1-C1-S1	122.8 (3)			
C1-S1-Zn1	106.65 (11)	N2-C1-S1	119.9 (2)			

Symmetry code: (i) 1 - x + y, 2 - x, z.

Table 2

Hydrogen-bonding geometry (Å, °).

$\begin{array}{ccccccc} N1-H1A\cdots Cl2^{ii} & 0.86 & 2.53 & 3.308 (3) & 151 \\ N1-H1B\cdots Cl1 & 0.86 & 2.54 & 3.338 (3) & 154 \\ N2-H2A\cdots Cl2^{ii} & 0.86 & 2.46 & 3.255 (3) & 154 \\ \end{array}$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$N1 - H1A \cdots Cl2^{ii}$ $N1 - H1B \cdots Cl1$ $N2 - H2A \cdots Cl2^{ii}$	0.86 0.86 0.86	2.53 2.54 2.46	3.308 (3) 3.338 (3) 3.255 (3)	151 154 154

Symmetry code: (ii) $x - \frac{1}{3}, y - \frac{2}{3}, \frac{1}{3} + z$.

H atoms were placed geometrically (C-H = 0.93-0.97 Å and N-H = 0.86 Å) and refined using the riding-model approximation, with $U_{\rm iso} = 1.2U_{\rm eq}({\rm C,N}).$

Data collection: *XSCANS* (Bruker, 1996); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SIR*97 (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXTL* (Bruker, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank the State Science and Technology Commission of China for Key Research Projects in the Natural Science Foundation of China (grant No. 60178029) for support.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bruker (1996). XSCANS. Version 2.2. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chiesi, A., Mangia, A., Nardelli, M. & Pelizzi, G. (1971). J. Cryst. Mol. Struct. 1, 285–289.
- Dragonette, K. S. & Karle, I. L. (1965). Acta Cryst. 19, 978-983.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ferrari, M. B., Capacchi, L. C., Fava, G. G., Montenero, A. & Nardelli, M. (1972). *Kristallografiya*, **17**, 22–32.
- Filinchuk, Ya. E., Schollmayer, D., Olijnik, V. V., Goreshnik, E. A. & Mys'kiv, M. G. (1996). *Koord. Khim.* 22, 870–875.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gambino, D., Kremer, E. & Baran, E. J. (2002). Spectrochim. Acta, A58, 3085– 3092.
- Kunchur, N. R. & Truter, M. R. (1958). J. Chem. Soc. pp. 3478-3484.
- Lopez-Garzon, R., Gutierrez-Valero, M. D., Godino-Salido, M. L., Keppler, B. K. & Nuber, B. (1993). J. Coord. Chem. 30, 111–123.
- Olijnyk, V. V., Filinchuk, Ya. E. & Pandiak, N. L. (2003). Z. Anorg. Allg. Chem. 629, 1904–1905.
- Pauling, L. (1960). *The Nature of the Chemical Bond*, 3rd ed. Ithaca, New York: Cornell University Press.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Xu, D., Jiang, M. H., Tao, X. T. & Shao, Z. S. (1987). J. Synth. Cryst. 16, 1-8.
- Yuan, D. R., Zhang, N., Tao, X. T., Xu, D., Yu, W. T., Shao, Z. S. & Jiang, M. H. (1993). Acta Opt. Sinica, 13, 456–460.